

MSG-3 Analysis

FOR MSI

28-10-00 Fuel Storage System

Effectivity: Xwing Fighter Spaceship Revision: 3 Date: 08/27/09

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

TABLE OF CONTENTS

TABLE OF CONTENTS	2
HISTORY OF CHANGES	3
LIST OF DOCUMENTS	4
MAINTENANCE SIGNIFICANT ITEM SELECTION (MSI)	5
SYSTEM BREAKDOWN & FUNCTIONAL DESCRIPTION	6
COMPONENTS - MAINTAINABILITY DATA	7
COMPONENTS - RELIABILITY DATA	8
SYSTEM DESIGN FEATURES	9
FUNCTIONAL FAILURE ANALYSIS	16
MAINTENANCE TASK SUMMARY	34

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	2/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

HISTORY OF CHANGES

Revision	Revision Date	Prepared By Validated By	Description Of Changes

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	3/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

LIST OF DOCUMENTS

Reference	Version/Issue	Title

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	4/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 0		MAIN	TENANCE S	IGNIFICANT ITE	M SELECTI	ON (MSI)			
MSI Number: 28-10-00 IT				el Storage Syste					
				Selection Cri	iteria				
ATA Number	Description		Could failure be Undetectable or not likely to be detected by the operating crew during normal duties?	Affect safety (on Ground or in Flight), including Safety/emergency System or	Could Failure have Significant Operational Impact?	Could Failure have Significant Economic Impact?	MSI?	Highest Manageable Level	Remarks
28-10-00	Fuel Storage System		Yes	No	Yes	No	Yes	28-10-00	
28-10-01	Fuselage tank		No	No	Yes	No	Yes	28-10-00	
28-10-03	Refueling pilot valve		No	No	No	No	No		
28-10-04	Drain valve-Center tank/co box	llector	Yes	No	No	Yes	Yes	28-10-00	
28-10-05	Pressure refueling adapter		No	No	No	No	No		
28-10-06	Check valve-flapper		No	Yes	No	Yes	Yes	28-10-00	
28-10-07	Interconnect valves		Yes	Yes	No	Yes	Yes	28-10-00	
28-10-08	Wing drain valve		No	No	No	No	No		
28-10-09	Wing float vent valve		No	No	Yes	No	Yes	28-10-00	
28-10-10	Center tank transfer jet pur	np	Yes	No	No	Yes	Yes	28-10-00	
28-10-11	Wing tank transfer jet pump	C	Yes	No	No	Yes	Yes	28-10-00	
28-10-12	Transfer inline check valve		No	No	No	No	No		

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	5/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 1	SYSTEM E	SYSTEM BREAKDOWN & FUNCTIONAL DESCRIPTION			
MSI Number: 28-10-00	ITEM:	Fuel Storage System			

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	6/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 2		S - MAINTAINABILITY DATA		
MSI Number: 28-10-00	ITEM:	Fuel Storage System		
ATA Number	Component	QPA	Supplier	Part Number
28-10-00	Fuel Storage System	1		
28-10-01	Fuselage tank	1		XXYYZZXX-ZZ
28-10-03	Refueling pilot valve	1		XXYYZZXX-ZZ
28-10-04	Drain valve-Center	1		XXYYZZXX-ZZ
	tank/collector box			
28-10-05	Pressure refueling adapter	1		XXYYZZXX-ZZ
28-10-06	Check valve-flapper	1		XXYYZZXX-ZZ
28-10-07	Interconnect valves	1		XXYYZZXX-ZZ
28-10-08	Wing drain valve	1		XXYYZZXX-ZZ
28-10-09	Wing float vent valve	1		XXYYZZXX-ZZ
28-10-10	Center tank transfer jet pump	1		XXYYZZXX-ZZ
28-10-11	Wing tank transfer jet pump	1		XXYYZZXX-ZZ
28-10-12	Transfer inline check valve	1		XXYYZZXX-ZZ

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	7/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 3		COMPONE	NTS - RELIABI	ITY DATA		
MSI Number: 28-10-	ASI Number: 28-10-00 ITEM: Fuel St		Fuel Storag	e System		
		Component			Reliability Data	
ATA Number	Componer			Similar to (A/P)	Historical MTBUR	Predicted MTBUR
28-10-00	Fuel Storage Sys	Fuel Storage System			0.0000	0.0000
28-10-01	Fuselage tank				0.0000	0.0000
28-10-03	Refueling pilot valve				0.0000	0.0000
28-10-04	Drain valve-Center tank/collector box		box		0.0000	0.0000
28-10-05	Pressure refuelin	Pressure refueling adapter			0.0000	0.0000
28-10-06	Check valve-flap	Check valve-flapper			0.0000	0.0000
28-10-07	Interconnect valv	Interconnect valves			0.0000	0.0000
28-10-08	Wing drain valve				0.0000	0.0000
28-10-09	Wing float vent va	alve			0.0000	0.0000
28-10-10	Center tank trans	fer jet pump			0.0000	0.0000
28-10-11	Wing tank transfe	er jet pump			0.0000	0.0000
28-10-12	Transfer inline ch	eck valve			0.0000	0.0000

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	8/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 4	SYSTEM DES	SIGN FEATURES
MSI Number: 28-10-00	ITEM:	Fuel Storage System

The complexity of a fuel system varies from the small, home-built a/c with no system complexity, up to the modern fighter were the fuel system may be critical for center of gravity (CG) reasons and therefore, very extensive, with triple redundancy.

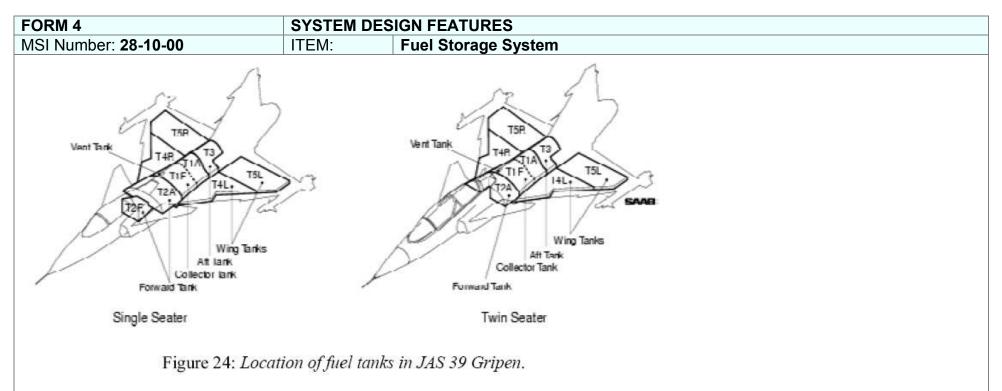
Most combat a/c fuel systems consist of several tanks for reasons of space, slosh, CG management or safety. The general layout may consist of one or more boost pumps that feed the engine/engines from a collector tank, usually a fuselage tank placed close to the CG. The collector tank is replenished by a fuel transfer system, which pumps fuel from the source tanks. Source tanks may be other fuselage, wing or drop tanks. The system may be pressurized to avoid cavitation in pumps, spontaneous fuel boiling at high altitude

or to aid or provide the means for fuel transfer. The a/c fuel system may consist of several sub systems that. The ones discussed here are:

- Engine Feed System
- Fuel Transfer System
- Pressurization and Vent System
- Refueling System, Ground and Air to Air

Other systems that might be identified, and that are described in [11] Gavel, are:

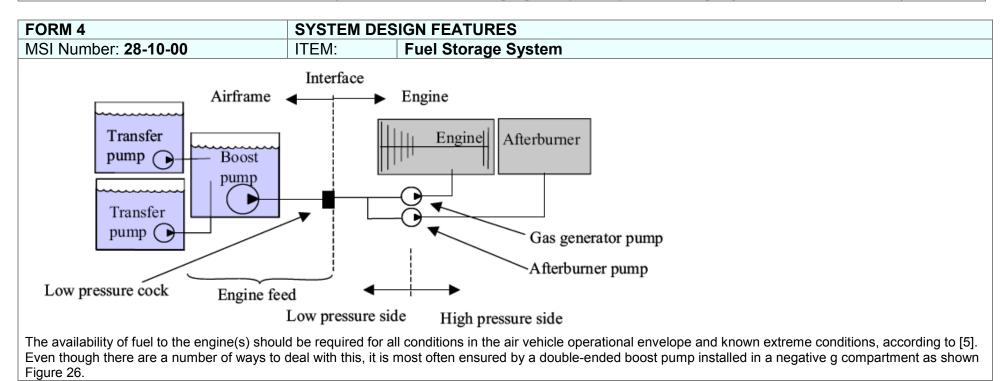
- Measurement and Management System
- Fire Prevention and Explosion Suppression System
- Cooling System where the fuel serves as a heat sink to other systems


According to [4] Raymer, there are three main types of fuel tank: discrete, bladder and integral tanks. The discrete tank is a separate fuel container similar to the fuel tank of a car. Discrete tanks are usually used only for small general aviation or home built a/c.

The bladder tank is a shaped rubber bladder placed in a fuselage cavity. The rubber is thick and may cause a fuel loss of about 10%. The bladder may also be made selfsealing, which makes it even thicker. Bladder tanks are often difficult to use in cavities with a complex structural arrangement such as wing tanks. Integral tanks are cavities within the airframe structure that are sealed to form fuel tanks. Bladder tanks have historically been considered less prone to leakage, which explains the willingness to pay the weight penalty. As the technique for integral tank manufacture has improved, the leakage problem is now less troublesome and integral tanks are the predominant type in modern a/c design. There are, however, modern applications of bladder tanks, for instance cargo bay installation in tanker a/c intended for air-to-air refueling. The fuel tank

layout of the JAS 39 Gripen is shown in Figure 24. Note the lack of fuel in the engine region.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	9/34

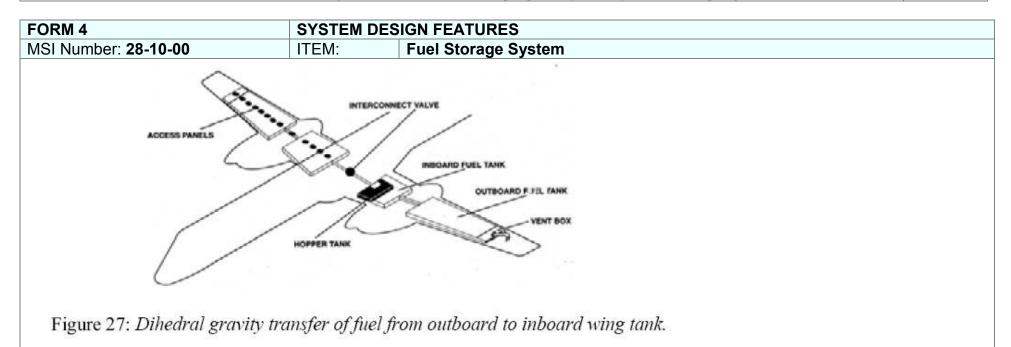

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

The engine feed is by far the most important task of the fuel system. The objective of the engine feed (which is considered part of the airframe and is not to be confused with the engine's own internal fuel system) is to boost the pressure in order to avoid cavitation in the engine system. The engine and airframe interface is often defined as shown in Figure 25, where the engine feed system is considered to consist of the engine feed tank, the boost pump, and the engine feed pipe.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	10 / 34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

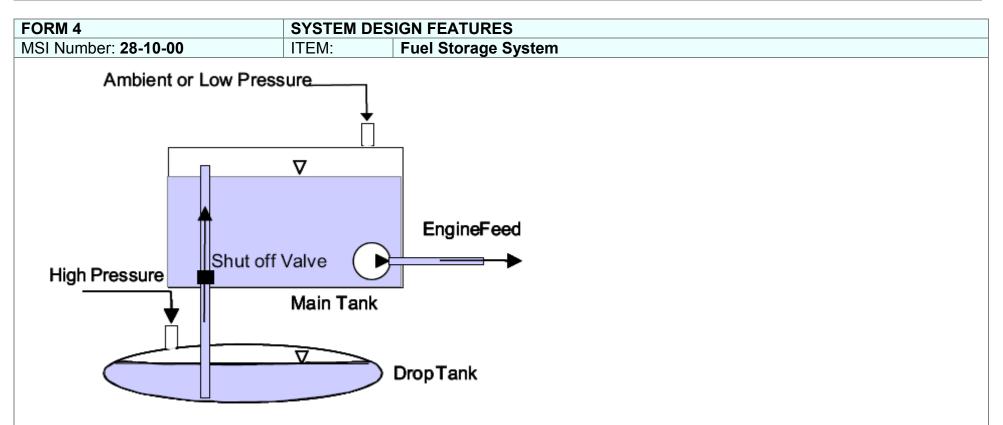
Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	11 / 34


Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 4	SYSTEM DES	SIGN FEATURES
MSI Number: 28-10-00	ITEM:	Fuel Storage System
Level flight	Nega	ative g
Figure 26: <i>Negative g ta</i>		nded boost pump. d is used in general aviation and commercial a/c depending on the tank configuration. An example of

The simplest way of transferring fuel is by gravity. This method is used in general aviation and commercial a/c depending on the tank configuration. An example of an a/c with gravity transfer is Saab 2000, shown in Figure 27, where the dihedral aids the transfer of fuel from the outboard to the inboard tank.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	12 / 34


Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

A more complex method is siphoning, shown in Figure 28, where the source tank is pressurized, thus pushing the fuel to the collector tank. Generally, it is engine bleed air, direct or conditioned by the environmental control system, which supplies the air via a pressure regulator.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	13 / 34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

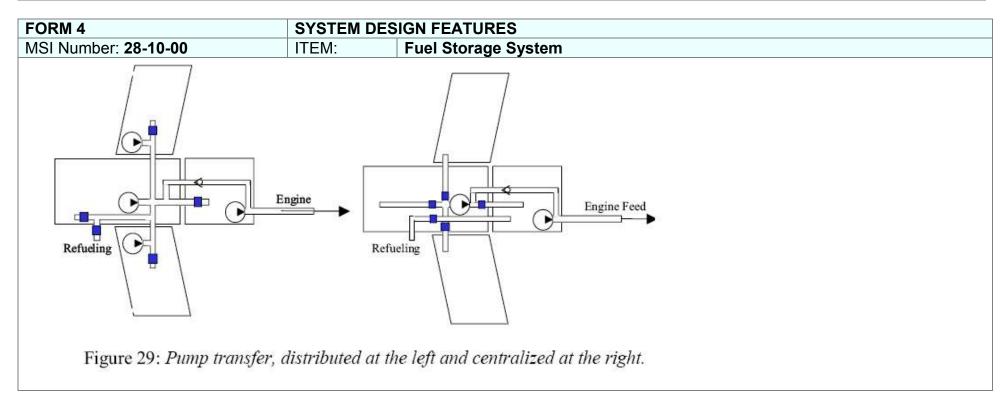
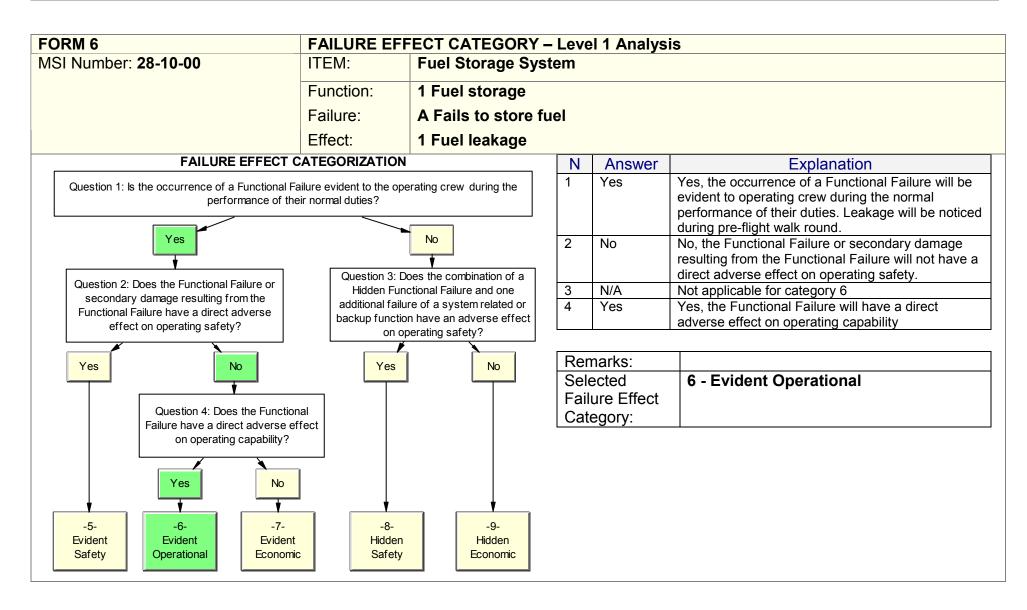


Figure 28: Siphoning of fuel from drop tank to main tank.

Pump transfer may be of two principally different types, inline or distributed, see Figure 29. The inline pump is often a centrally placed pump, and transfers fuel from several tanks. This is lightweight and compact but is susceptible to cavitation in suction lines due to pressure drop. Distributed pumps are located in the transfer tank, thus minimizing suction head and cavitation. The fuel transfer system is described in more detail in [13] and also in appended paper [VII].

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	14 / 34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.


Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	15 / 34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FOF	RM 5		FUNCTION	FUNCTIONAL FAILURE ANALYSIS							
٨SI	Number: 28-10-	-00	ITEM:		Fuel Storage System						
F	Function	FF	Functional Failure	FE	Failure Effect	FC	Failure Cause	F-FF-FE- FC			
1	Fuel storage	Α	Fails to store fuel	1	Fuel leakage	а	Fuel tank leakage	1A1a			
	C C					b	Drain valve leakage	1A1b			
2	Enable fuel flow in tank from outboard wing inboar	A	Fails to allow flow inboard	1	Loss of redundancy of fuel flow from outboard to inboard in wing tanks. Other valves in wing allow fuel passage inboard	а	Flapper valve failed closed	2A1a			
		В	Fails to prevent flow outboard (during maneuvering)	1	Possible shift in fuel distribution in wing during maneuvering	а	Flapper valve failed open	2B1a			
3 Vent wing tank in flight and during refueling		A	Fails to vent wing tanks during flight and refuel	1	Loss of wing tank venting redundancy	а	Float vent value (inner or outer wing) stuck closed	3A1a			
		В	Fails to prevent fuel entering into vent lines and dumping overboard during maneuvering	1	Fuel may be spilled from vents during maneuvering or refueling	а	Outer wing float valve stuck open	3B1a			
4	Allow interconection of wing tanks from both sides	A	Fails to interconnect left and right fuel tanks	1	Inability to balance fuel load	а	Interconnect switch failure	4A1a			
		В	Loss of redundant interconnect between left and right tanks	1	Fuel tranfer is slower from one side to the other	а	Interconnect valve failure	4B1a			
		С	Fails to indicate interconnect valves in- transit or open	1	Crew unaware of interconnect valve functionality	а	Lighted indicator failure	4C1a			

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	16 / 34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

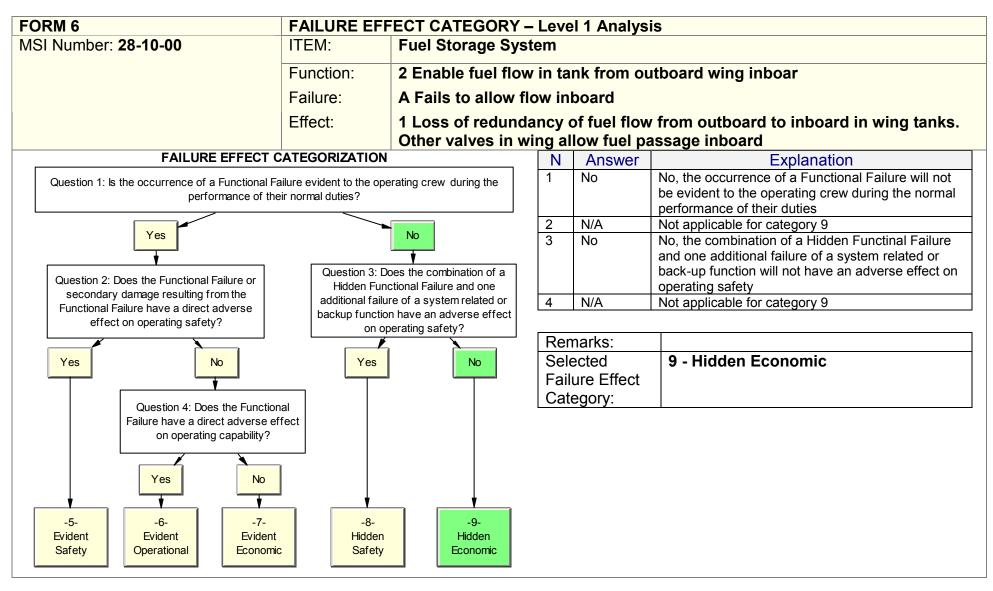
Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	17/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 7	TASK SELECTION – Level 2 Analysis				
MSI Number: 28-10-00	ITEM:	Fuel Storage System			
Cause Reference: 1A1a FEC: 6 - Evident Operational	Function:	1 Fuel storage			
	Failure:	A Fails to store fuel			
	Effect:	1 Fuel leakage			
	Cause:	a Fuel tank leakage			

	Ca	atego	ory			Task Questions	Task QuestionsAnswerExplanation				
A	A	А	A	A	Is the lub and effec	rication or servicing task applicable tive?	No				
			В	В	Is a checl effective?	k to verify operation applicable and	N/A	Not applicable for	applicable for category 6		
В	B	В	С	С	degradati	pection or functional check to detect ion of the function (potential failure) e and effective?	No				
С	С	С	D	D	Is a restoration task to reduce the failure rate applicable and effective?		No				
D	D	D	E	E		rd task to avoid failures or to reduce e rate applicable and effective?	No				
Ε			F		Is there a task or combination of tasks that are applicable and effective?		N/A	Not applicable for	category 6		
٦	Task	(Nu	mbe	er	Туре	Description		Interval	Remarks	Zone flag	

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	18 / 34


Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

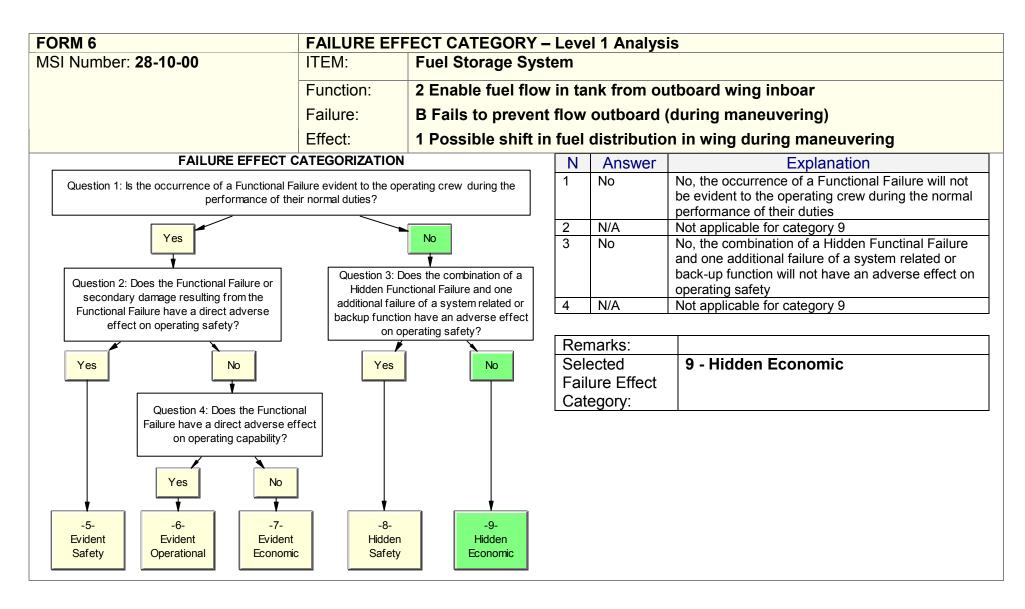
FORM 7	TASK SELE	CTION – Level 2 Analysis
MSI Number: 28-10-00	ITEM:	Fuel Storage System
Cause Reference: 1A1b FEC: 6 - Evident Operational	Function:	1 Fuel storage
	Failure:	A Fails to store fuel
	Effect:	1 Fuel leakage
	Cause:	b Drain valve leakage

	Category Task Questions					Task Questions	Answer		Explanation	
A	A	A	A	A	Is the lub and effec	rication or servicing task applicable stive?	No			
			В	В	Is a chective?	k to verify operation applicable and ?	N/A	Not applicable for o	category 6	
В	В	В	С	С	degradati	bection or functional check to detect ion of the function (potential failure) e and effective?	No			
С	С	С	D	D		ration task to reduce the failure rate e and effective?	No			
D	D	D	E	E		ard task to avoid failures or to reduce e rate applicable and effective?	No			
E			F			a task or combination of tasks that are e and effective?	N/A	Not applicable for o	category 6	
									1	
٦	Task Number		mbe	r	Туре	Description		Interval	Remarks	Zone flag

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	19/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	20/34


Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

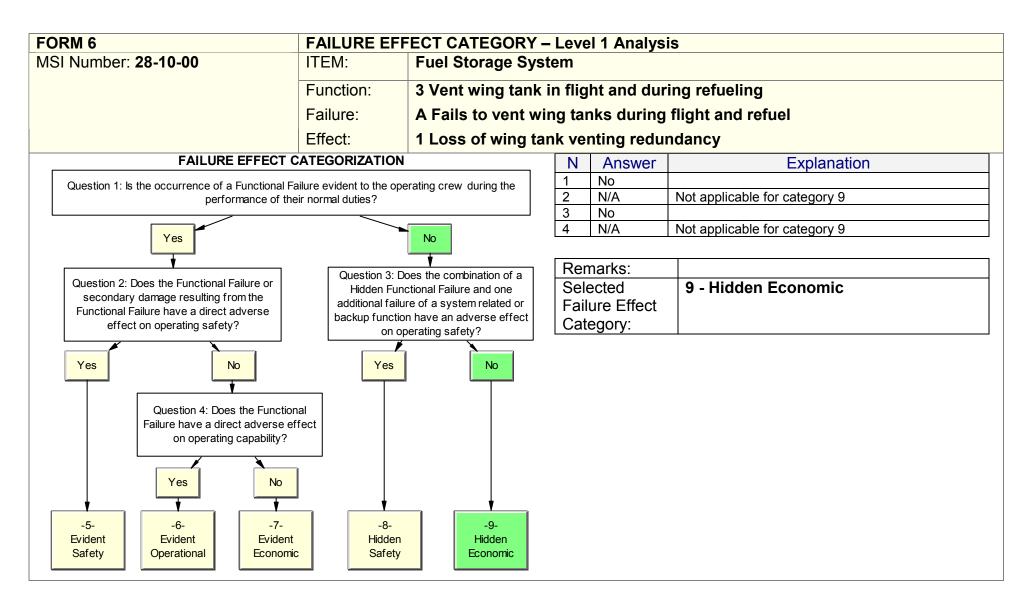
FORM 7	TASK SELE	CTION – Level 2 Analysis
MSI Number: 28-10-00	ITEM:	Fuel Storage System
Cause Reference: 2A1a FEC: 9 - Hidden Economic	Function:	2 Enable fuel flow in tank from outboard wing inboar
	Failure:	A Fails to allow flow inboard
	Effect:	1 Loss of redundancy of fuel flow from outboard to inboard in wing tanks. Other valves in wing allow fuel passage inboard
	Cause:	a Flapper valve failed closed

	Ca	ateg	ory			Task Questions	Answer		Explanation	
A	A	A	A	A	Is the lub and effect	prication or servicing task applicable ctive?	No			
			В	B	Is a chec effective	k to verify operation applicable and ?	Yes	Yes, a check to ver	ify operation will be applicable and effectiv	e
В	В	В	С	С	degradat	pection or functional check to detect ion of the function (potential failure) a and effective?	No			
С	С	С	D	D		pration task to reduce the failure rate le and effective?	No			
D	D	D	E	Е		ard task to avoid failures or to reduce e rate applicable and effective?	No			
E			F			a task or combination of tasks that are e and effective?	N/A	Not applicable for c	ategory 9	
										· · · · · · · · · · · · · · · · · · ·
	Task	(Nu	mbe	r	Type Description			Interval	Remarks	Zone flag
00)1				OP	Op.check of the wing flapper valves		8 flights		

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	21/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	22 / 34


Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

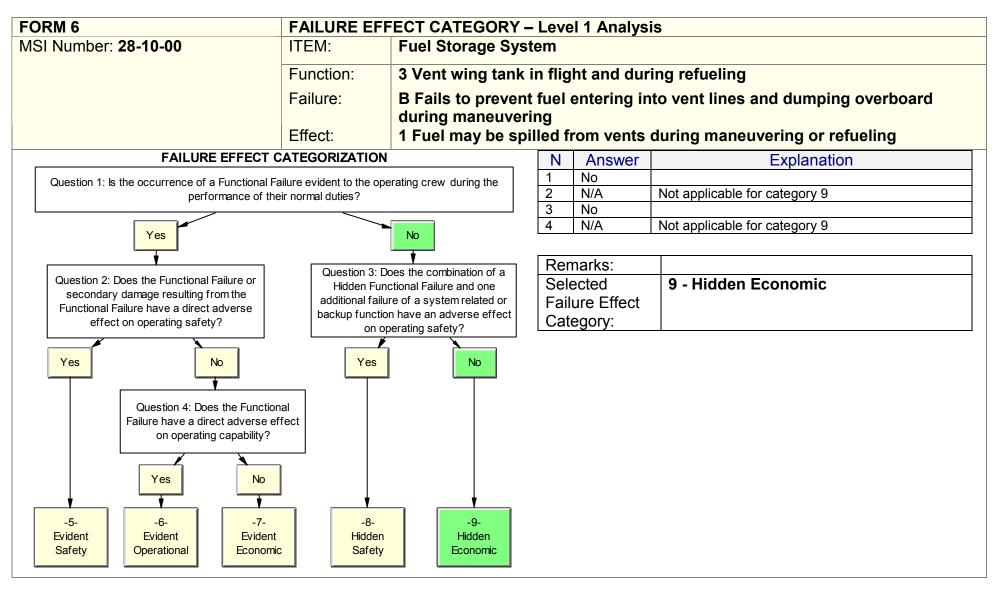
FORM 7	TASK SELECTION – Level 2 Analysis				
MSI Number: 28-10-00	ITEM:	Fuel Storage System			
Cause Reference: 2B1a FEC: 9 - Hidden Economic	Function:	2 Enable fuel flow in tank from outboard wing inboar			
	Failure:	B Fails to prevent flow outboard (during maneuvering)			
	Effect:	1 Possible shift in fuel distribution in wing during maneuvering			
	Cause:	a Flapper valve failed open			

	Са	ateg	ory			Task Questions	Answer		Explanation	
A	A	A	A	A	Is the lub and effect	rication or servicing task applicable tive?	No			
			В	В	Is a chec effective	k to verify operation applicable and ?	Yes	Yes, a check to verify operation will be applicable and effective		
В	В	В	С	C	degradat	bection or functional check to detect ion of the function (potential failure) e and effective?	No			
С	С	С	D	D		ration task to reduce the failure rate e and effective?	No			
D	D	D	E	E		ard task to avoid failures or to reduce erate applicable and effective?	No			
E			F			a task or combination of tasks that are e and effective?	N/A	Not applicable for category 9		
-	Task	c Nu	mbe	r	Туре	Description		Interval	Remarks	Zone flag
00				•	OP	Operational check of the wing flapper	valves	8 flights		20110 1109

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	23 / 34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	24 / 34


Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

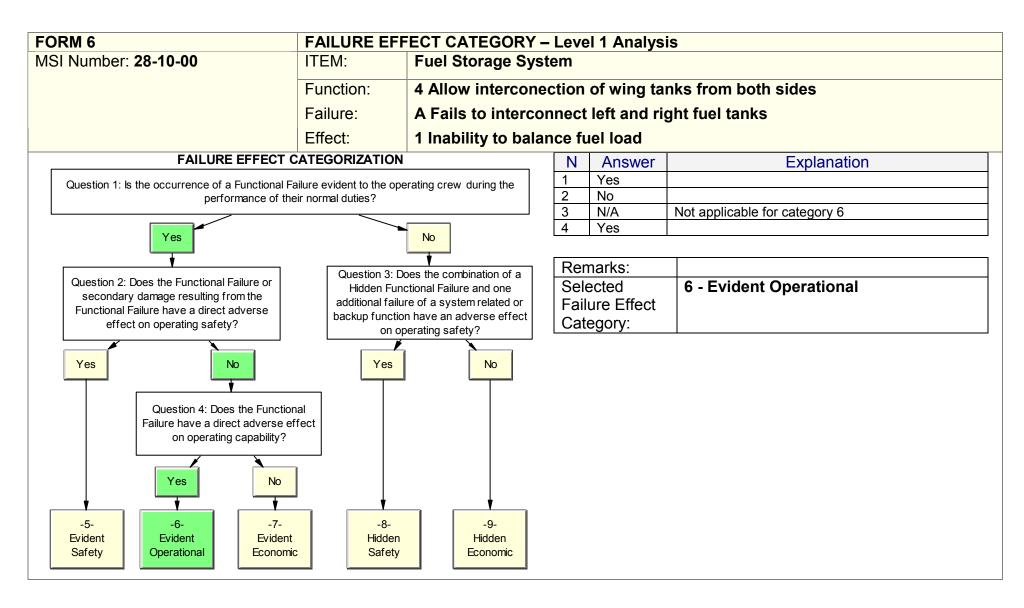
FORM 7	TASK SELE	CTION – Level 2 Analysis
MSI Number: 28-10-00	ITEM:	Fuel Storage System
Cause Reference: 3A1a FEC: 9 - Hidden Economic	Function:	3 Vent wing tank in flight and during refueling
	Failure:	A Fails to vent wing tanks during flight and refuel
	Effect:	1 Loss of wing tank venting redundancy
	Cause:	a Float vent value (inner or outer wing) stuck closed

	Са	atego	ory			Task Questions	Answer		Explanation	
A	A	A	A	A	Is the lub and effect	rication or servicing task applicable tive?	No			
			В	В	Is a chec	k to verify operation applicable and ?	Yes	Yes, a check to ve	erify operation will be applicable and effective	e
В	В	В	С	C	degradat	bection or functional check to detect ion of the function (potential failure) e and effective?	No			
С	С	С	D	D		ration task to reduce the failure rate e and effective?	No			
D	D	D	E	E		ard task to avoid failures or to reduce e rate applicable and effective?	No			
Е			F			a task or combination of tasks that are e and effective?	N/A	Not applicable for category 9		
					_					
	Task	k Nu	mbe	r	Туре	Description		Interval	Remarks	Zone flag
00	2				OP	Operational check of wing tank float v	alves	8 flights		

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	25 / 34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	26/34


Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

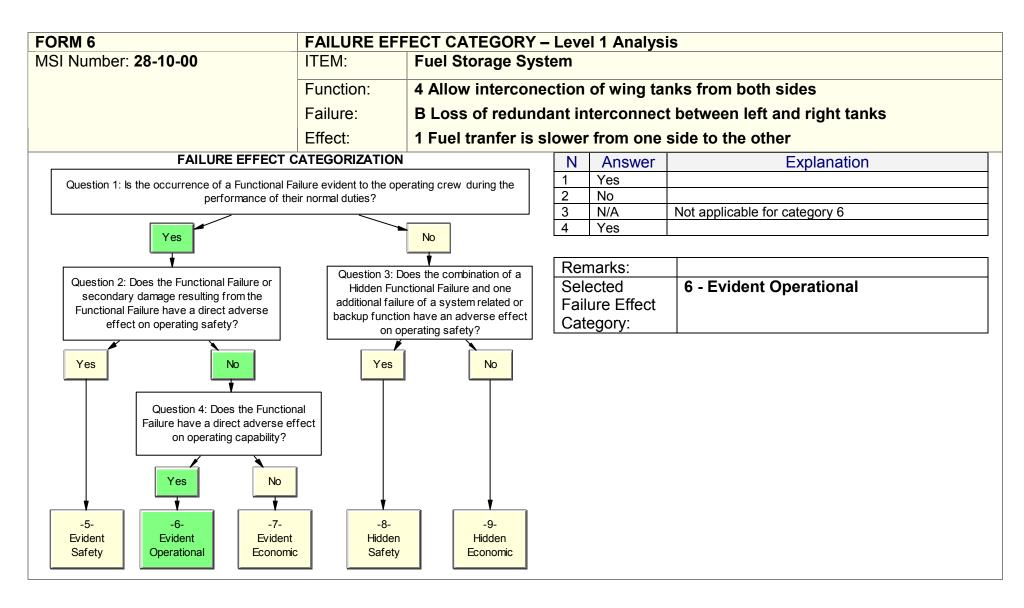
FORM 7	TASK SELECTION – Level 2 Analysis				
MSI Number: 28-10-00	ITEM:	Fuel Storage System			
Cause Reference: 3B1a FEC: 9 - Hidden Economic	Function:	3 Vent wing tank in flight and during refueling			
	Failure:	B Fails to prevent fuel entering into vent lines and dumping overboard during maneuvering			
	Effect:	1 Fuel may be spilled from vents during maneuvering or refueling			
	Cause:	a Outer wing float valve stuck open			

	Са	ateg	ory			Task Questions	Answer		Explanation	
A	A	A	A	A	Is the lub and effect	prication or servicing task applicable stive?	No			
			В	B	Is a chec effective	k to verify operation applicable and ?	Yes	Yes, a check to ve	erify operation will be applicable and effective	e
В	В	В	С	С	degradat	pection or functional check to detect ion of the function (potential failure) e and effective?	No			
С	С	С	D	D		is a restoration task to reduce the failure rate applicable and effective?				
D	D	D	E	E		ard task to avoid failures or to reduce e rate applicable and effective?	No			
E			F			a task or combination of tasks that are e and effective?	N/A	Not applicable for	category 9	
								1		1
-	Task	k Nu	mbe	r	Туре	Description		Interval	Remarks	Zone flag
00	2				OP	Operational check of wing tank float v	alves	8 flights		

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	27/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	28 / 34


Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

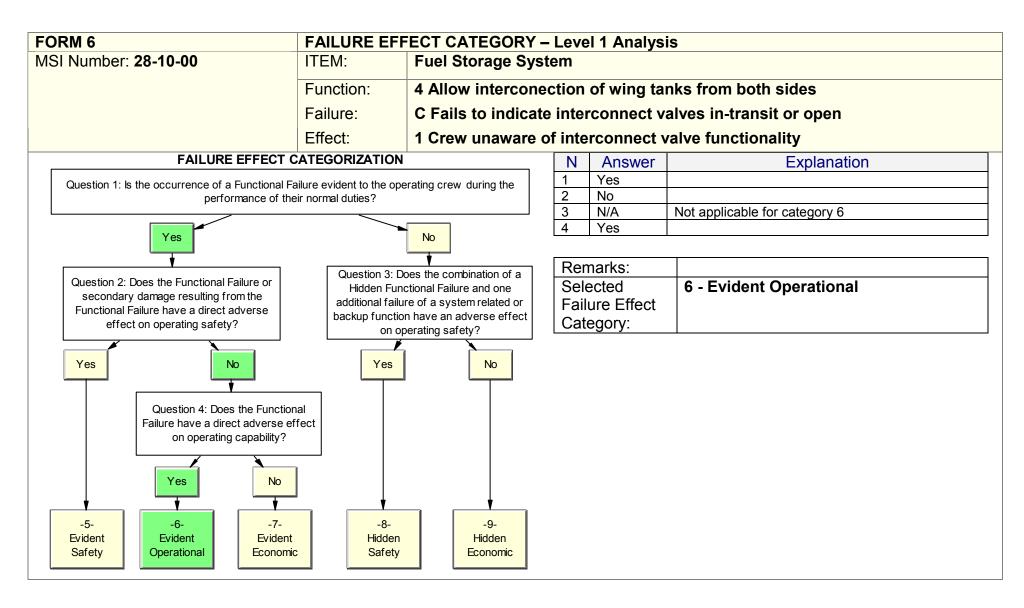
FORM 7	TASK SELECTION – Level 2 Analysis				
MSI Number: 28-10-00	ITEM:	Fuel Storage System			
Cause Reference: 4A1a FEC: 6 - Evident Operational	Function:	4 Allow interconection of wing tanks from both sides			
	Failure:	A Fails to interconnect left and right fuel tanks			
	Effect:	1 Inability to balance fuel load			
	Cause:	a Interconnect switch failure			

	Ca	atego	ory			Task Questions	Answer		Explanation	
A	A	A	A	A	Is the lub and effec	rication or servicing task applicable tive?	No			
			В	В	Is a checl effective?	k to verify operation applicable and	N/A	Not applicable for o	category 6	
B	B	В	С	С	degradati	bection or functional check to detect ion of the function (potential failure) e and effective?	No			
С	С	С	D	D		ration task to reduce the failure rate e and effective?	No			
D	D	D	E	E		and task to avoid failures or to reduce erate applicable and effective?	No			
E			F			task or combination of tasks that are and effective?	N/A	Not applicable for o	category 6	
	_									
٦	Task Number Type Descrip		Description		Interval	Remarks	Zone flag			

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	29/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	30 / 34


Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 7	TASK SELECTION – Level 2 Analysis				
MSI Number: 28-10-00	ITEM:	Fuel Storage System			
Cause Reference: 4B1a FEC: 6 - Evident Operational	Function:	4 Allow interconection of wing tanks from both sides			
	Failure:	B Loss of redundant interconnect between left and right tanks			
	Effect:	1 Fuel tranfer is slower from one side to the other			
	Cause:	a Interconnect valve failure			

	Category					Task Questions	Answer	Explanation		
A	A	A A A Is the lubrication or servicing task applicable and effective?				e	No			
	B B Is a check to verify operation applicable and effective?						N/A	Not applicable for	category 6	
В	B	В	B C C Is an inspection or functional check to detect degradation of the function (potential failure) applicable and effective?				No			
С	С	С	D	D		ration task to reduce the failure rate e and effective?	No			
D	D	D	E	E		and task to avoid failures or to reduce erate applicable and effective?	No			
E			F			task or combination of tasks that are and effective?	N/A	Not applicable for	category 6	
Т	ask	(Nu	mhe	r	Туре	Description		Interval	Remarks	Zone flag

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	31/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	32/34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 7	TASK SELECTION – Level 2 Analysis					
MSI Number: 28-10-00	ITEM:	Fuel Storage System				
Cause Reference: 4C1a FEC: 6 - Evident Operational	Function:	4 Allow interconection of wing tanks from both sides				
	Failure:	C Fails to indicate interconnect valves in-transit or open				
	Effect:	1 Crew unaware of interconnect valve functionality				
	Cause:	a Lighted indicator failure				

	Category					Task Questions	Answer		Explanation	
A	A	А	A	A	Is the lubri and effect	ication or servicing task applicable ive?	No			
			B B Is a check to verify operation applicable and effective?					Not applicable for o	category 6	
В	B	В	С	С	degradatio	ection or functional check to detect on of the function (potential failure) and effective?	No			
С	С	С	D	D		ation task to reduce the failure rate and effective?	No			
D	D	D	E	E		d task to avoid failures or to reduce rate applicable and effective?	No			
E			F			task or combination of tasks that are and effective?	N/A	Not applicable for c	category 6	
Т	[ask	(Nu	mbe	er	Туре	Description		Interval	Remarks	Zone flag

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	33 / 34

Company: ALD Department: Reliability&Safety	SCHEDULED MAINTENANCE DEVELOPMENT DATA	
MSI: 28-10-00	Xwing Fighter Spaceship - Fuel Storage System	A.L.D.

FORM 8			MAINTENANCE TASK SUMMARY								
MSI Number: 28-	10-00		ITEM:	Fuel Storage Syste	em						
						1					
Task Number Type			Task Description		Interval	Remarks	FEC	F-FF-FE- FC			
001	OP	Op.check	k of the wing fla	apper valves	8 flights		9	2A1a			
001	OP	Operation	nal check of the	e wing flapper valves	8 flights		9	2B1a			
002 OP Operation			ional check of wing tank float valves		8 flights		9	3A1a			
002	OP	Operation	nal check of wi	ng tank float valves	8 flights		9	3B1a			

Prepared by:	Date:	Workgroup:	Approval:	Revision:	Update Date:	Page:
ALD	08/27/09	RAMS	John Smit	3	08/27/09	34 / 34